JEE Advanced Entrance Examination
എൻജിനീയറിംഗ് ദേശീയതല പ്രവേശന പരീക്ഷയാണിത്. എല്ലാ വർഷവും ഐഐടികൾ റൊട്ടേഷണൽ അടിസ്ഥാനത്തിലാണ് പരീക്ഷ നടത്തുന്നത്. ജോയിന്റ് അഡ്മിഷൻ ബോർഡിന്റെ (ജെഎബി) മാർഗനിർദേശപ്രകാരം ഏഴ് സോണൽ കോർഡിനേറ്റിംഗ് ഐഐടികളാണ് ഇത് സംഘടിപ്പിക്കുന്നത്. ബാച്ചിലേഴ്സ്, ഇന്റഗ്രേറ്റഡ് മാസ്റ്റേഴ്സ് അല്ലെങ്കിൽ ബാച്ചിലേഴ്സ് മാസ്റ്റർ ഡ്യുവൽ ഡിഗ്രി കോഴ്സുകളിലെ ഉദ്യോഗാർത്ഥികൾക്ക് പ്രവേശനം നൽകും. പരീക്ഷയിൽ യോഗ്യത നേടുന്ന ഉദ്യോഗാർത്ഥികൾക്ക് എഞ്ചിനീയറിംഗ് അല്ലെങ്കിൽ ആർക്കിടെക്ചർ കോഴ്സുകളിൽ പ്രവേശനം ലഭിക്കും. JEE Main എക്സാം എഴുതി മികച്ച റാങ്കിൽ വന്നവർക്കു മാത്രമാണ് ഈ എൻട്രൻസ് എക്സാം എഴുതാൻ യോഗ്യത .
Exam Highlights
Eligibility
- Candidates must qualify 12th or equivalent examination in 2022 or 2022 from any recognized board or university. Mandatory Subject: Applying candidate must have Physics, Chemistry & Mathematics (PCM) in intermediate subject.
Mode of Examination
- Computer based online examination
Medium of Examination
- English / Hindi
Exam Duration
- 3 Hours
Type of Questions
- Multiple choice Questions
Pappers
- Physics , Chemistry, Mathematics
Total Marks
- 300
Marking Scheme
- The exam has a concept of full, partial and zero marks.
Mode of Application
- Online
How to Apply
Step-1
- Visit Official Website and Login
- Visit the official website of JEE Advanced
- The login window will appear on the screen
- Enter the JEE Main 2022 Roll Number, Password and Security Pin and submit it
- Choose the new password for JEE Advanced
Step-2
- After creating the new password, a new page will be displayed containing candidate’s details furnished at the time of JEE Main registration.
- Mention the number of attempts.
- Choose the three examination cities as per their preferences.
- Select the language of the question paper (English or Hindi).
- Fill the category and scribe status.
- Check all the filled details carefully and submit it.
Step3:
- Upload Scanned Images
- Students are needed to keep ready the required documents in the prescribed specification. The image should be in JPEG format. The image size should be between 50 KB to 300 KB. The documents required for registration are mentioned belowUpload Images:
- Go through the upload images option.
- Select the required images.
- Upload the scanned images one by one carefully.
Step-4:
- Registration Fee Payment
- After uploading the images, candidates can make the fee payment through the following methods:
Online Mode:
- Students can pay the application fee online through the debit/credit card or net banking.
- Click on the “Pay Registration Fee” option.
- The Multi Option Payment System (MOPS) page will appear on the screen.
- Enter the payment details and pay the application fee.
- Candidates paying for DUBAI exam centre are needed to pay the fee using International debit/credit card issued by foreign banks & issued outside India.
Offline Mode:
- First, click on the “Pay Registration Fee” link.
- Take the printout of the e-challan of SBI bank.
- Submit the printed e-challan with the required fee to the nearest SBI branch.
Step-5
- Print Application Form
- After the fee payment confirmation, students will be able to take printout of the application form. Students are advised to take extra printouts and keep them safe for further use. There is no need to send any hard copy to the authority.
Fee Structure
- Female SC. ST, PWD candidate -1400/-
- All other candidate - 2800/-
Website
Syllabus
Mathematics
- Algebra :Algebra of complex numbers, addition, multiplication, conjugation, polar representation, properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric interpretations.aQuadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots. Arithmetic, geometric and harmonic progressions, arithmetic, geometric and harmonic means, sums of finite arithmetic and geometric progressions, infinite geometric series, sums of squares and cubes of the first n natural numbers. Logarithms and their properties.Permutations and combinations, binomial theorem for a positive integral index, properties of binomial coefficients.
- Matrices:Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three, properties of these matrix operations, diagonal, symmetric and skew-symmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables.
- Probability:Addition and multiplication rules of probability, conditional probability, Bayes Theorem, independence of events, computation of probability of events using permutations and combinations.
- Trigonometry:Trigonometric functions, their periodicity and graphs, addition and subtraction formulae, formulae involving multiple and sub-multiple angles, general solution of trigonometric equations.Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle formula and the area of a triangle, inverse trigonometric functions (principal value only).
- Analytical Geometry:Two dimensions: Cartesian coordinates, distance between two points, section formulae, shift of origin.Equation of a straight line in various forms, angle between two lines, distance of a point from a line; Lines through the point of intersection of two given lines, equation of the bisector of the angle between two lines, concurrency of lines; Centroid, orthocentre, incentre and circumcentre of a triangle.Equation of a circle in various forms, equations of tangent, normal and chord. Parametric equations of a circle, intersection of a circle with a straight line or a circle, equation of a circle through the points of intersection of two circles and those of a circle and a straight line.Equations of a parabola, ellipse and hyperbola in standard form, their foci, directrices and eccentricity, parametric equations, equations of tangent and normal. Locus problems.Three dimensions: Direction cosines and direction ratios, equation of a straight line in space, equation of a plane, distance of a point from a plane.
- Differential Calculus :Real valued functions of a real variable, into, onto and one-to-one functions, sum, difference, product and quotient of two functions, composite functions, absolute value, polynomial, rational, trigonometric, exponential and logarithmic functions.Limit and continuity of a function, limit and continuity of the sum, difference, product and quotient of two functions, L’Hospital rule of evaluation of limits of functions.Even and odd functions, inverse of a function, continuity of composite functions, intermediate value property of continuous functions.Derivative of a function, derivative of the sum, difference, product and quotient of two functions, chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential and logarithmic functions.Derivatives of implicit functions, derivatives up to order two, geometrical interpretation of the derivative, tangents and normals, increasing and decreasing functions, maximum and minimum values of a function, Rolle’s Theorem and Lagrange’s mean value theorem.
- Integral Calculus :Integration as the inverse process of differentiation, indefinite integrals of standard functions, definite integrals and their properties, fundamental theorem of integral calculus.Integration by parts, integration by the methods of substitution and partial fractions, application of definite integrals to the determination of areas involving simple curves. Formation of ordinary differential equations, solution of homogeneous differential equations, separation of variables method, linear first order differential equations
- Vectors:Addition of vectors, scalar multiplication, dot and cross products, scalar triple products and their geometrical interpretations